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There has been considerable interest in neighboring group
effects by heteroatoms supporting the oxidation of organic
sulfides*? For small methionine (Met)-containing peptides, the
one-electron (1e) oxidation of N- or C-terminal Met yields sulfide
radical cations which can stabilize through the respective forma-
tion of sulfur—nitroger? or sulfur-oxygert 20/1¢* three-electron
bonds?56 Met oxidation is biologically important during condi-
tions of oxidative stressSpecifically the oxidation of Mét in
p-amyloid peptidesfAP) 1-40 or 1-42, the major constituents

of senile plaques in Alzheimer’s disease, has been associated with

part of the neurotoxicity of these sequendédn the helical
C-terminus ofAP1-40, AIIGLM3VGGVV, radical cations of
Met® have little opportunity to interact with heteroatoms from
amino acid side chains or the N-terminal amino or C-terminal
carboxylate group? However, association with the=€D group

of the peptide bond C-terminal to flemay be possible, as the
ca. 3.6 A average-SO distance between M&tand I1&1—C=0

in the native sequent®s close to the sum of the van der Waals
radii of the two atoms.

Here, we report, for the first time, experimental evidence for
sulfide radical catiorramide association during the 1e-oxidation
of Met in the model compounil-acetylmethionine amidel)
(pulse radiolytically via reaction with hydroxyl radicals, H®
see Scheme 1).

Figure 1, parts A and B, open circles, displays the optical
spectra recorded 2 and & after pulse irradiation of anJ0-
saturated aqueous solution, pH 4.0, containing 20* M 1
(pH 4.0 was selected to support complementary conductivity
experiments). Under these conditions, pulse radiolysis provides
HO* with an initial yield of G,o; = 5.35 The spectra show
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two maxima at ca. 290 and 480 nm, respectively. These maxima
represent the sulfursulfur bonded radical catiob (480 nmj?

and theo-(alkylthio)alkyl radicals4 (290 nm)** Despite relatively
constant yields of the two maxima at both time points, significant
time-dependent differences appear in the -3800 nm region,
indicating the presence of additional species. Potential candidates
are the hydroxysulfuranyl radicat>*” and/or the sulfuroxygen
bonded specie6. Hydroxysulfuranyl radicals absorb withyax

= 340 nm*®"The optical spectrum d is not known. However,
most 2/lo*-type sulfur-oxygen bonds absorb withmax =
390 £ 20 nm#*1®22 more or less independent of the source of
the oxygen. Hence, the following analysis was based on the
approximation that the optical spectruméis similar to that of

a Met sulfide radical cationcarboxylate complex.The experi-
mental spectra were deconvoluted into contributions from com-
ponents2, 4, 5, and, tentatively, shown in Figure AB, by
using a linear regression technique of the fGe:

i=1

AA@]) = Zei(j'j)ai

While the spectral fit in Figure 1A requires the presence of all
absorbing componentg,and4—6, the fit in Figure 1B requires

(12) Calculated according to the following: Schuler, R. H.; Hartzell, A.
L.; Behar, B.J. Phys. Chem1981, 85, 192-199. TheG-value denotes the
amount of generated/consumed species per 100 eV absorbed eGergy;
1.0 corresponds to 0.1036n0l/J absorbed energy.

(13) Hiller, K.-O.; Masloch, B.; Gbl, M.; Asmus, K.-D.J. Am. Chem.
So0c.1981, 103 2734-2743.

(14) Hiller, K.-O.; Asmus, K.-DInt. J. Radiat. Biol.1981 40, 597—604.

(15) By analogy to the reaction of H@ith organic sulfideg®?

(16) Bonifag¢, M.; Mockel, H.; Bahnemann, D.; Asmus, K.-D. Chem.
Soc., Perkin Trans. 2975 675-685.

(17) Schimeich, Ch.; Bobrowski, KJ. Am. Chem. S0d.993 115, 6538~
6547.

(18) Chatgilialoglu, C.; Castelhano, A. L.; Griller, D. Org. Chem1985
50, 2516-2518.

(19) Mahling, S.; Asmus, K.-D.; Glass, R. S.; Hojjatie, M.; Wilson, G. S
J. Org. Chem1987 52, 3717-3724.

© 2000 American Chemical Society

Published on Web 09/29/2000



Communications to the Editor

12 -
9 —
6 -
‘= s}
o
C")O 0FF
—
W
<
O n}
9 -
6 L
3F AAAA++OO A ‘io
H 4 Foy TONE NN e
A Aa o+
bt
0k vwmm%\b
1 1

250 300 350 400 450 500 550 600 650
Wavelength, nm

Figure 1. Optical spectra recorded (A) 2 and (B)/& after pulse

irradiation of an NO-saturated aqueous solution, pH 4.0, containing 2

x 10* M N-Ac-Met-NH, (1). The open circles ) represent the
experimental spectra, and the lines)(the fits, obtained through
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coefficients of the respective component spettrRadical 2
converts into specie$—6 (via 3) with t;p =1 us k=7 x 10°
s™1). Specie$ decomposes within 8s wherea$ is more stable.
Ultimately, 5 and 6 convert into4 (via 3). The yield of2 and
4—6 after complete reaction between H&hd1,i.e. att > 2 us,
amounts toG = 5.35, corresponding t@&yo; = 5.35. This
agreement validates our spectral deconvolution. As 2fter the
pulse, radical cations and6 are present with yields dbs = 1.7
andG6 = 0.7, i.e.,G5+6 = 2.4.

Further proof for the simultaneous formation ®and 6 was
obtained by time-resolved conductivity measuremétfReactions
2, 4, and 5 generate HOand weakly conducting Met sulfide
radical cationsA ~ 45 S cn? ). At pH 4.0, HO™ spontaneously
neutralizes by reaction with highly conducting A = 315 S
cn?).26 Hence, reactions 2, 4, and 5, followed by the neutralization
of HO™, result in an overall loss of specific conductivigkfA =
+45-315= —270 S cm). Figure 2 shows that pulse irradiation
of N,O-saturated solutions of 2 104 M 1, pH 4.0, indeed results
in a negative conductivity signal with kinetics paralleling the
decomposition o2 (the initial positive spike &t < 1 us is caused
by primary radiation chemical processés)he negative con-
ductivity signal reache® x AA = —722 S cni at 2us after the
pulse. An exclusive reaction @fvia reactions 2, 4, and 5 would
lead toG x AA =5.35x (—270 S cm) = —1445 S cm. Hence,
the yield of radical cations derived froinamounts to 0.5 Gyor
= 2.68, in quite good agreement wi@ks = 2.4, quantified by
UV spectroscopy. This experiment confirms that spedes
represented by the 390 nm absorbance, is indeed a radical cation.
From the conductivity experiment the extinction coefficienof
was calculated as follows. At &8s after the pulse5 is the only
radical cation observable in solution and at this point in time we
obtain€4so(5) =G x e480(5)/(G x AA/—270 S cr) = 5917 M?

summation of the component spectra obtained after spectral deconvolution. cm*
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Figure 2. Conductivity vs time profile obtained after pulse irradiation
of an NO-saturated aqueous solution, pH 4.0, 0k210~4 M N-Ac-
Met-NH; (2). Insert: Yield vs time profiles for the individual components
in Figure 1.

4 and 5 only. The sum over all component spectra yields an

Our data show that Met sulfide radical cations can associate
with the oxygen of an amide function, representative for a peptide
bond. Under our experimental conditions 0k2.0~4 M substrate
1, the yield of6 represents ca. 30% of the overall radical cation
yield. However, larger relative yields & can be expected for
lower, physiologically more relevant, concentrationd pivhere
reaction 5 will compete favorably with reaction 4. The formation
of sulfide—amide oxygen bonded intermediates is also more likely
for peptides which show preexisting close suffoxygen dis-
tances, such as j[PAP1-401° As a potential alternative to structure
6, sulfide radical catiorB may also associate intramolecularly
with one of the amide nitrogens. However, for amides theoretical
calculations show a larger coefficient of the orbital on oxygen in
no compared with the coefficient of the orbital on nitrogen in
7,.28 This feature suggests that an amide oxygen interacts better
with electrophiles than an amide nitrog&rin favor of structure
6.
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j-th wavelength of observation, argl= ¢l wherec, is the concentration of
the i-th transient and the optical path length of the monitoring light. For
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